Механика

НАПРЯЖЕННОЕ СОСТОЯНИЕ ТОЛСТОСТЕННЫХ ЦИЛИНДРИЧЕСКИХ ТРУБ С УЧЕТОМ СИЛЫ ТЯЖЕСТИ ДЛЯ МАТЕРИАЛОВ СО СЛОЖНОЙ РЕОЛОГИЕЙ

В рамках метода малого параметра исследуется поле напряжений весомой цилиндрической трубы при моделировании материала несжимаемой упруговязкопластической средой. Дается оценка влияния на величину пластической зоны физико-механических параметров конструкции.

ГРАНИЧНЫЕ СВОЙСТВА ОБОБЩЕННЫХ ИНТЕГРАЛОВ ТИПА КОШИ В ПРОСТРАНСТВАХ ГЛАДКИХ ФУНКЦИЙ

На гладком контуре рассматриваются обобщенные интегралы типа Коши с ядром, зависящим от разности аргументов. Они охватывают как потенциалы двойного слоя для эллиптических уравнений второго порядка, так и обобщенные интегралы типа Коши для эллиптических систем первого порядка. Для функций, определяемых этими интегралами, найдены достаточные условия, обеспечивающие их принадлежность классу C n,μ , вплоть до границы. Получены соответствующие формулы для их предельных значений.

ПОЛЗУЩЕЕ ТЕЧЕНИЕ ВЯЗКОУПРУГОЙ ЖИДКОСТИ СО СВОБОДНОЙ ПОВЕРХНОСТЬЮ В УСЛОВИЯХ НЕИЗОТЕРМИЧНОСТИ

Работа посвящена моделированию медленного движения вязкоупругой жидкости со свободной поверхностью, реализующейся при входе полимерной жидкости в формующую насадку и выхода из нее. Движение жидкости описывается уравнениями сохранения массы, импульса и энергии, дополненными реологическим уравнением состояния среды Гиезекуса. На основе метода конечных элементов разработан устойчивый численный алгоритм решения задачи. Проведены численные исследования по определению формы выходной струи для различных режимов течения и формы насадки.

МЕТОД КОНЕЧНЫХ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ — ОБОБЩЕНИЕ КЛАССИЧЕСКОЙ ПРОЦЕДУРЫ РАЗЛОЖЕНИЯ ПО СОБСТВЕННЫМ ВЕКТОР-ФУНКЦИЯМ

Показано, что структурный алгоритм метода конечных интегральных преобразований является обобщением классической процедуры разложения по собственным вектор-функциям. Рассматриваются начально-краевые задачи, описываемые гиперболической системой линейных дифференциальных уравнений в частных производных второго порядка. Доказывается, что в общем случае несамосопряженного оператора решение путем разложения по собственным вектор-функциям возможно лишь в результате применения биортогональных конечных интегральных преобразований.

МОДЕЛИРОВАНИЕ ПРОЦЕССА ИСПАРЕНИЯ ПОЛИМЕРНОГО ВОЛОКНА

Анализируется процесс испарения растворителя с поверхности осесимметричного двухкомпонентного полимерного волокна. Решается уравнение диффузии Фика, зависимость коэффициента диффузии от концентрации задается с помощью теории свободного объема Врентаса – Дуды. Представлено численное решение задачи для ПАН/ДМФ волокон различного начального радиуса в диапазоне, соответствующем диаметрам струй в процессе электроформования волокон.

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПОЛОСЫ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ НЕРАВНОМЕРНОМ НАГРЕВЕ

Рассматривается задача механики разрушения для полосы (стержня), ослабленной прямолинейной трещиной с концевыми зонами, находящегося под действием неравномерного температурного поля. Толщина полосы считается переменной. Получено условие предельного состояния полосы.

МОДЕЛИРОВАНИЕ ПРОДОЛЬНОГО УДАРА УПРУГОГО СТЕРЖНЯ КАК МЕХАНИЧЕСКОЙ СИСТЕМЫ С КОНЕЧНЫМ ЧИСЛОМ СТЕПЕНЕЙ СВОБОДЫ

Разработана модель продольного удара стержня как механической системы с конечным числом степеней свободы. Уравнения движения преобразованы к виду, когда в структуре уравнений представлен параметр, определяющий скорость звука в материале стержня. Это позволяет естественным образом сопоставлять результаты с волновой моделью продольного удара. Представлен алгоритм численного решения уравнений движения и его реализация при моделировании продольного удара тестового объекта.

МОДИФИКАЦИЯ МЕТОДА ЧИЗНЕЛЛА ПРИБЛИЖЕННОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ О СХОДЯЩЕЙСЯ УДАРНОЙ ВОЛНЕ

Обсуждается автомодельная задача о схождении к центру сильной ударной волны. Предлагается приближенное аналитическое решение, совпадающее по форме с решением Чизнелла. Для определения автомодельных представителей скорости, плотности и квадрата скорости звука выписаны простые формулы. Показатель автомодельности находится из решения единственного алгебраического уравнения. Достигаемые результаты находятся в улучшенном соответствии с точным решением классического численного метода.

АЛГОРИТМ ПОСТРОЕНИЯ ОПТИМАЛЬНЫХ СИСТЕМ ОДНОМЕРНЫХ ПОДАЛГЕБР ТРЕХМЕРНЫХ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ТЕОРИИ ПЛАСТИЧНОСТИ

Рассматривается естественная конечномерная (размерности 12) подалгебра алгебры симметрий, соответствующей группе симметрий предложенных в 1959 г. Д.Д. Ивлевым трехмерных гиперболических уравнений пространственной задачи теории идеальной пластичности для состояний, отвечающих ребру призмы Кулона – Треска, сформулированных в изостатической системе координат.

РАЗЛОЖЕНИЕ РЕШЕНИЯ ЗАДАЧ ТЕОРИИ УПРУГОСТИ ДЛЯ ПОЛОСЫ В РЯД ПО МОДАМ

Рассматриваются колебания полосы в рамках плоской задачи теории упругости. Приведено описание мод колебаний. Изучены свойства собственных значений и собственных функций краевой задачи для их амплитуд. Построена функция Грина, являющаяся ядром обратного оператора краевой задачи. Доказаны полнота собственных функций и теоремы о разложении, позволяющие решать задачи для полубесконечных или конечных пластин при произвольных видах граничных условий.

Страницы