Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Механика

Дуальные матричные и бикватернионные методы решения прямой и обратной задач кинематики роботов-манипуляторов на примере стэнфордского манипулятора. I

На примере стэнфордского манипулятора рассматривается методология решения прямой задачи кинематики роботов-манипуляторов с использованием винтовых методов механики (матриц дуальных направляющих косинусов, бикватернионов Клиффорда), выводятся кинематические уравнения движения манипулятора, необходимые для решения обратной задачи кинематики манипулятора с использованием бикватернионной теории кинематического управления.

Конфигурационное пространство во второй краевой задаче из неклассической теории пластин

В статье рассматривается краевая задача второго рода, для уравнений равновесия «в смешанной форме», определяющая неклассическую математическую модель для шарнирно закрепленной изотропной и однородной пластины в рамках обобщенных гипотез Тимошенко с учетом начальных неправильностей. Для указанной задачи впервые доказывается существование обобщенного решения и слабая компактность множества приближенных решений, получаемого с помощью метода Бубнова–Галеркина по схеме В. З. Власова.

Динамический простой краевой эффект в цилиндрической оболочке с краем произвольной формы

Целью данной работы является обобщение результатов, полученных для случаев круговой цилиндрической оболочки и оболочки со скошенным краем. Рассматривается нестационарный волновой процесс в цилиндрической оболочке с краем произвольной формы. На срединной поверхности оболочки вводится полугеодезическая система координат. Изучается динамический простой краевой эффект. Для нахождения решения применяется преобразование Лапласа, обращение которого осуществляется методом перевала.

Методика определения областей, требующих квантового описания в рамках гибридного метода (квантовая механика / молекулярная механика)

В рамках гибридного метода(QМ/ММ) разработана новая модель, определяющая активную область структуры, т. е. ту область, для описания которой нужно применить высокоточные квантовые методы. В основе модели лежит решение задачи определения атомов с критическими значениями напряжения. Потенциальная энергия этих атомов и их ближайшего окружения рассчитывалась квантово-химическим методом, а потенциальная энергия оставшейся части структуры молекулярно-механическим методом.

Одномерная задача о нестационарной связанной упругой диффузии для слоя

Рассматривается задача об определении напряжённо-деформированного состояния упругой среды с учётом структурных изменений, обусловленных наличием диффузионных потоков. Влияние диффузионных процессов на напряжённо-деформированное состояние среды учитывается с помощью локально равновесной модели упругой диффузии, включающей в себя связанную систему уравнений движения упругого тела и уравнения массопереноса. Для решения используется разложение искомых функций в ряды Фурье с последующим применением интегрального преобразования Лапласа по времени. Строится фундаментальное решение задачи.

Определение изменения температуры стенки полости в твердом теле при изменении температуры движущегося в полости газа

Найдено изменение температуры стенки цилиндрической полости в твердом теле как отклик на изменение температуры протекающего в полости газа. Рассмотрены 3 важных частных случая изменения температуры газа со временем: температура постоянна; температура изменяется по линейному закону; температура изменяется по гармоническому закону. Представлены графики пяти «µ-функций», через которые записываются решения. Графики получены с помощью квадратурной формулы Гаусса численным интегрированием несобственных интегралов, содержащих цилиндрические функции.

Одномерные уравнения движения вязкой несжимаемой жидкости в гибких трубках

В статье описан новый вариант осреднения уравнений Навье–Стокса для осесимметричного течения вязкой несжимаемой жидкости при минимальном числе упрощающих гипотез. Приведена полная система пространственно одномерных дифференциальных уравнений, описывающая динамику кровотока в системе крупных артериальных сосудов

Хаотическое движение волчка со смещённым центром масс

Изучено движение твёрдого тела с малым смещением центра масс с оси динамической симметрии. Получены аналитические условия для существования гиперболической особой точки на фазовом портрете системы и аналитическое решение для сепаратрис. Под действием малого возмущения, вызванного асимметрией, тело совершает хаотическое движение вблизи сепаратрис. С помощью численного моделирования, основанного на методе Мельникова в интерпретации Холмса–Масдена, получено условие существования хаотического движения, которое проиллюстрировано серией сечений Пуанкаре. 

Параметрический синтез систем стабилизации

Реализован метод выбора параметров обратных связей газореактивных систем стабилизации спутников с упругими стержнями, основанный на минимизации среднеквадратичного уклонения вещественной частотной характеристики проектируемой системы относительно желаемой вещественной частотной характеристики. Приведены результаты анализа переходных функций ошибок стабилизации с учетом влияния времени запаздывания в газореактивных исполнительных органах систем стабилизации. 

Асимптотическое интегрирование динамических уравнений теории упругости для случая многослойной тонкой оболочки

Производится асимптотическое интегрирование трехмерных динамических уравнений теории упругости для случая многослойных тонких оболочек произвольного очертания. Построены тангенциальное и поперечное низкочастотные длинноволновые приближения. Выведены двумерные разрешающие системы уравнений. 

Страницы