Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Панкратов И. А., Сапунков Я. Г., Челноков Ю. Н. Решение задачи с оптимальной переориентации орбиты космического аппарата с использованием кватернионных уравнений ориентации орбитальной системы координат // Известия Саратовского университета. Новая серия. Серия : Математика. Механика. Информатика. 2013. Т. 13, вып. 1. С. 84-92. DOI: 10.18500/1816-9791-2013-13-1-1-84-92

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн: 
15.02.2013
Полный текст:
(downloads: 64)
Язык публикации: 
русский
Рубрика: 
УДК: 
629

Решение задачи с оптимальной переориентации орбиты космического аппарата с использованием кватернионных уравнений ориентации орбитальной системы координат

Авторы: 
Панкратов Илья Алексеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Сапунков Яков Григорьевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Челноков Юрий Николаевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

С помощью принципа максимума Понтрягина и кватернионных уравнений решается задача оптимальной переориентации орбиты космического аппарата (КА). Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Функционал, определяющий качество процесса управления, равен взвешенной сумме времени переориентации орбитыКАи импульса управления за время переориентации орбиты или затрат энергии. Сформулированы дифференциальные краевые задачи переориентации орбиты КА. Приведены законы оптимального управления, условия трансверсальности, не содержащие неопределенных множителей Лагранжа. Построены примеры численного решения задачи.

Список источников: 
  1. Ненахов С. В., Челноков Ю. Н. Кватернионное решение задачи оптимального управления ориентацией орбиты космического аппарата // Бортовые интегрированные комплексы и современные проблемы управления : сб. тр. междунар. конф. М. : МАИ, 1997. С. 59–60. [Nenakhov S. V., Chelnokov Yu. N. Quaternion solution of a task of an optimal control of spacecraft’s orbit’s orientation // Onboard integrated systems and modern problems of control : Sbornik. Moscow : MAI, 1997. P. 59–60.]
  2. Сергеев Д. А., Челноков Ю. Н. Оптимальное управление ориентацией орбиты космического аппарата // Проблемы точной механики и управления: сб. науч. тр. /ИПТМУ РАН. Саратов, 2002. С. 64–75. [Sergeev D. A., Chelnokov Yu. N. Optimal control of spacecraft’s orbit’s orientation // Problems of precise mechanics and control : Sbornik. Saratov, 2002. P. 64–75.]
  3. Афанасьева Ю. В., Челноков Ю. Н. Оптимальное управление ориентацией орбиты космического аппарата // Математика. Механика : сб. науч. тр. Саратов : Изд-во Сарат. ун-та, 2005. Вып. 7. С. 153–155. [Afanas’eva Yu. V., Chelnokov Yu. N. Optimal control of spacecraft’s orbit’s orientation // Mathematics. Mechanics : Sbornik. Saratov, 2005. Iss. 7. P. 153–155.]
  4. Панкратов И. А., Сапунков Я. Г., Челноков Ю. Н. Об одной задаче оптимальной переориентации орбиты космического аппарата // Изв. Сарат. ун-та. Нов. сер. 2012. Т. 12. Сер. Математика. Механика. Информатика, вып. 3. С. 87–95. [Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N. About a problem of spacecraft’s orbit optimal reorientation // Izv. Saratov. Univer. New Ser. 2012. Vol. 12. Ser. Math. Mech. Inform., iss. 3. P. 87–95.]
  5. Челноков Ю. Н. Применение кватернионов в теории орбитального движения искусственного спутника. II // Космические исследования. 1993. Т. 31, вып. 3. C. 3–15. [Chelnokov Yu. N. Application of quaternions in the theory of orbital motion of an artificial satellite. II // Cosmic Research. 1993. Vol. 31, № 3. P. 409–418.]
  6. Челноков Ю. Н. Применение кватернионов в задачах оптимального управления движением центра масс космического аппарата в ньютоновском гравитационном поле. II // Космические исследования. 2003. Т. 41, вып. 1. С. 92–107. [Chelnokov Yu. N. The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: II // Cosmic Research. 2003. Vol. 41, № 1. P. 85–99.]
  7. Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. М. : Физматлит, 2006. 512 с. [Chelnokov Yu. N. Quaternion and biquaternion models and methods of mechanics of solids and their applications. Moscow : Fizmatlit, 2006. 512 p.]
  8. Челноков Ю. Н. Применение кватернионов в теории орбитального движения искусственного спутника. I // Космические исследования. 1992. Т. 30, вып 6. С. 759–770. [Chelnokov Yu. N. Application of quaternions in the theory of orbital motion of an artificial satellite. I // Cosmic Research. 1992. Vol. 30, № 6. P. 612–621.]
  9. Челноков Ю. Н. Применение кватернионов в задачах оптимального управления движением центра масс космического аппарата в ньютоновском гравитационном поле. I // Космические исследования. 2001. Т. 39, вып 5. С. 502–517. [Chelnokov Yu. N. The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: I // Cosmic Research. 2001. Vol. 39, № 5. P. 470–484.]
  10. Панкратов И. А., Челноков Ю. Н. Аналитическое решение дифференциальных уравнений ориентации круговой орбиты космического аппарата // Изв. Сарат. ун-та. Нов. сер. 2011. Т. 11. Сер. Математика. Механика. Информатика, вып. 1. С. 84–89. [Pankratov I. A., Chelnokov Yu. N. Analytical solution of differential equations of circular spacecraft’s orbit orientation // Izv. Saratov. Univer. New Ser. 2011. Vol. 11. Ser. Math. Mech. Inform., iss. 1. P. 84–89.]
  11. Челноков Ю. Н. Оптимальная переориентация орбиты космического аппарата посредством реактивной тяги, ортогональной плоскости орбиты // Математика. Механика : сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2006. Вып. 8. С. 231–234. [Chelnokov Yu. N. Optimal reorientation of spacecraft’s orbit through thrust orthogonal to the plane of orbit // Mathematics. Mechanics : Sbornik. Saratov, 2006. Iss. 8. P. 231–234.]
  12. Абалакин В. К., Аксенов Е. П., Гребенников Е. А., Демин В. Г., Рябов Ю. А. Справочное руководство по небесной механике и астродинамике. М. : Наука, 1976. 864 с. [Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A. Reference guide on celestial mechanics and astrodynamics. Moscow : Nauka, 1976. 864 p.]
  13. Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. М. : Наука, 1983. 393 с. [Pontryagin L. S., Boltyanskiy V. G., Gamkrelidze R. V., Mischenko E. F. The mathematical theory of optimal processes. Moscow : Nauka, 1983. 393 p.]
  14. Моисеев Н. Н. Численные методы в теории оптимальных систем. М. : Наука, 1971. 424 с. [Moiseev N. N. Numerical methods in the theory of optimal systems. Moscow : Nauka, 1971. 424 p.]
  15. Челноков Ю. Н. Применение кватернионов в задачах оптимального управления движением центра масс космического аппарата в ньютоновском гравитационном поле. III // Космические исследования. 2003. Т. 41, вып. 5. С. 488–505. [Chelnokov Yu. N. The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field: III // Cosmic Research. 2003. Vol. 41, № 5. P. 460–477.]
  16. Бордовицына Т. В. Современные численные методы в задачах небесной механики. М. : Наука, 1984. 136 с. [Bordovitzyna T. V. Modern numerical methods in problems of celestial mechanics. Moscow : Nauka, 1984. 136 p.]