орбита

Исследование равновесных конфигураций космической тросовой системы при буксировке пассивного аппарата с остатками топлива

Рассматривается задача увода с орбиты крупногабаритного космического мусора с помощью тросовой транспортной системы, включающей в себя орбитальный буксир, трос и нефункционирующий космический аппарат с остатками топлива. Исследуется движение выбранной системы в плоскости орбиты при допущении, что орбита является круговой. Движение тросовой системы изучается в орбитальной системе отсчета в предположении, что тяга орбитального буксира постоянна, как по величине, так и по направлению.

Расчёт наискорейших перелётов космического аппарата между круговыми орбитами

В кватернионной постановке рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА). Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Необходимо минимизировать длительность процесса переориентации орбиты КА. Для описания движения центра масс КА использованы кватернионные дифференциальные уравнения ориентации орбитальной системы координат.

Аналитическое решение дифференциальных уравнений ориентации круговой орбиты космического аппарата

Рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА) с помощью ограниченного по модулю управления, ортогонального плоскости орбиты КА. Найдено аналитическое решение дифференциальных уравнений ориентации круговой орбиты КА для постоянного на смежных участках активного движения КА управления.

Решение задачи оптимальной коррекции угловых элементов орбиты космического аппарата с использованием кватернионного уравнения ориентации орбиты

В статье рассмотрена задача оптимальной коррекции угловых элементов орбиты космического аппарата. Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Комбинированный функционал качества характеризует затраты времени и энергии на процесс управления. С помощью принципа максимума Понтрягина и кватернионного дифференциального уравнения ориентации орбиты космического аппарата сформулирована дифференциальная краевая задача коррекции угловых элементов орбиты космического аппарата.

Решение задачи с оптимальной переориентации орбиты космического аппарата с использованием кватернионных уравнений ориентации орбитальной системы координат

С помощью принципа максимума Понтрягина и кватернионных уравнений решается задача оптимальной переориентации орбиты космического аппарата (КА). Управление (вектор реактивной тяги, ортогональной плоскости орбиты) ограничено по модулю. Функционал, определяющий качество процесса управления, равен взвешенной сумме времени переориентации орбитыКАи импульса управления за время переориентации орбиты или затрат энергии. Сформулированы дифференциальные краевые задачи переориентации орбиты КА.

Аналитическое решение уравнений ориентации околокруговой орбиты космического аппарата

Рассмотрена задача оптимальной переориентации орбиты космического аппарата (КА) с помощью ограниченного по модулю управления, ортогонального плоскости орбиты КА. Найдено приближённое аналитическое решение дифференциальных уравнений ориентации круговой орбиты КА для постоянного на смежных участках активного движения КА управления.