Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


индекс задачи

Модификация нового подхода к решению краевой задачи Гильберта для аналитических функций в многосвязной круговой области

Предлагается модификация нового подхода к решению краевой задачи Гильберта для аналитической функции в многосвязной области, основанное на построении решения соответствующей однородной задачи, когда определяется аналитическая в области функция по известным граничным значениям ее аргумента применительно к случаю, когда область является круговой. 

К решению неоднородной краевой задачи гильберта для аналитической функции в многосвязной круговой области в особом случае

Предлагается новый подход к решению краевой задачи Гильберта для аналитической функции в многосвязной круговой области, основанный на построении решения соответствующей однородной задачи, когда определяется аналитическая в области функция по известным граничным значениям её аргумента. Рассматривается особый случай задачи, когда индекс задачи неотрицателен и меньше порядка связности области, уменьшенного на единицу. Картина разрешимости задачи зависит от разрешимости и числа решений соответствующей системы линейных алгебраических уравнений.

Решение однородной краевой задачи Римана со счётным множеством точек разрыва первого рода её коэффициента

Даётся решение однородной краевой задачи Римана со счётным множеством точек разрыва первого рода её коэффициента, когда требуется найти две функции, аналитические соответственно в верхней и нижней полуплоскости, по заданному на действительной оси линейному краевому условию, связывающему граничные значения искомых функций.

Один случай задачи Гильберта с особенностями коэффициентов

Рассмотрена задача Гильберта со счетным множеством точек разрыва первого рода коэффициентов в ситуации, когда ряд, составленный из скачков аргумента функции коэффициентов, расходится,а индекс задачи конечен. Получена формула общего решения этой задачи, исследована картина разрешимости.