В работе исследуются вопросы о сходимости разложений произвольной функции f(x) в ряд Фурье по системе собственных функций функционально-дифференциального оператора с инволюцией Ly = y′(1 − x) + ®y′(x) +p1(x)y(x)+p2(x)y(1−x), y(0) = °y(1). Основываясь на исследовании резольвентыболее простогофункциональнодифференциального оператора и используя метод контурного интегрирования резольвенты, получены достаточные условия сходимости ряда Фурье к функции f(x) (аналог теоремы Жордана–Дирихле).
Исследуется смешанная задача для дифференциального уравнения первого порядка с инволюцией в потенциале и с периодическими краевыми условиями. Получены уточненные асимптотические формулы для собственных значений и собственных функций соответствующей спектральной задачи, на основе которых проводится обоснование применения метода Фурье.
В статье дается новое краткое доказательство теоремы В. А. Чернятина о классическом решении методом Фурье смешанной задачи для волнового уравнения с закрепленными концами при минимальных требованиях на начальные данные. Далее, рассматривается подобная задача для простейшего функционально-дифференциального уравнения первого порядка с инволюцией в случае закрепленного конца, и также получаются результаты окончательного характера. Эти результаты получаются благодаря существенному использованию идей А. Н. Крылова по ускорению сходимости рядов, подобных рядам Фурье.
Для интегрального оператора с негладкой инволюцией установлена равносходимость разложений по собственным и присоединеннымфункциям и в обычный тригонометрический ряд Фурье.
Для дифференциального оператора второго порядка с инволюцией в производных и интегральными краевыми условиями доказана базисность Рисса со скобками собственных и присоединенных функций. Для доказательства осуществляется сведение спектральной задачи исходного оператора к спектральной задаче для оператора первого порядка в пространстве вектор-функций размерности четыре,не содержащего инволюцию.
Изучаются спектральные свойства интегрального оператора с инволюцией специального вида, для разложений по собственным функциям этого оператора получена теорема равносходимости.
На простейшем геометрическом графе из двух ребер, содержащем цикл, описан класс интегральных операторов с областью значений, удовлетворяющей условию непрерывности в узле графа. Установлена равносходимость разложений по собственным и присоединенным функциям и в тригонометрический ряд Фурье.
В работе установлена равносходимость на всем отрезке рядов Фурье по собственным и присоединенным функциям функционально-дифференциального оператора с инволюцией, содержащего потенциалы, и простейшего функционально-дифференциального оператора.
Для решения некоторой смешанной задачи с инволюцией и вещественным симметричным потенциалом найдено явное аналитическое представление методом Фурье. При этом использованы приемы, позволяющие избегать почленного дифференцирования функционального ряда и накладывать минимальные условия на начальные данные задачи.
В статье рассматривается интегральный оператор, ядро которого имеет разрывы первого рода на линиях t = x и t = 1 − x. Установлена равносходимость разложений в ряд Фурье произвольной интегрируемой функцииf(x) по собственным и присоединенным функциям рассматриваемого оператора и разложений линейной комбинации функций f(x) и f(1 − x) по обычной тригонометрической системе. Для исследования равносходимости привлекается прием, основанный на методе Коши–Пуанкаре интегрирования резольвенты по спектральному параметру.