Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


обратная задача

Волны в вязкоупругом цилиндрическом волноводе с дефектом

Рассмотрена прямая задача о волнах в вязкоупругом неоднородном цилиндрическом волноводе с кольцевым отслоением и решена обратная задача по идентификации параметров отслоения по дополнительной информации о поле смещений на внешней границе волновода. Для учета реологических свойств в рамках концепции комплексных модулей использована модель стандартного вязкоупругого тела.

Необходимые и достаточные условия разрешимости обратной задачи для оператора штурма–лиувилля на конечном отрезке с неинтегрируемой особенностью внутри интервала

 В данной статье исследуется обратная задача спектрального анализа восстановления оператора Штурма–Лиувилля на конечном отрезке с неинтегрируемой особенностью типа Бесселя внутри интервала по заданным спектральным данным. Получена конструктивная процедура решения обратной задачи, доказана единственность восстановления оператора по заданным спектральным данным, а также получены необходимые и достаточные условия разрешимости данной обратной задачи.

Обратная задача для оператора Штурма–Лиувилля на полуоси с неинтегрируемой особенностью внутри интервала

В статье исследуется обратная задача восстановления оператора Штурма–Лиувилля на полуоси с неинтегрируемой особенностью типа Бесселя внутри интервала по заданной функции Вейля. Получена процедура решения, доказана единственность такого восстановления, а также получены необходимые и достаточные условия разрешимости обратной задачи. 

Обратная спектральная задача для дискретных операторов в топологических пространствах

Исследуется обратная спектральная задача для дискретных операторов треугольной структуры в топологических пространствах. Указана конструктивная процедура решения обратной задачи. Получены необходимые и достаточные условия ее разрешимости.

Численное решение обратной задачи для оператора Штурма–Лиувилля с разрывным потенциалом

В статье рассматривается дифференциальный оператор Штурма–Лиувилля с потенциалом, имеющим конечное число точек разрыва первого рода. Конечной целью является численное восстановление потенциала такого вида. Основной результат представленной статьи — доказанная теорема и процедура, указывающие способ получения характеристик разрыва из начальных данных.

Решение задачи об определении плотности тепловых источников

Дано решение задачи об определении плотности тепловых источников в стержне, в котором установилась стационарная температура, если эта температура задана приближенно. В математической постановке это задача нахождения равномерных приближений к правой части обыкновенного дифференциального уравнения в случае, когда заданы равномерное приближение к решению и величина погрешности.

Об одной обратной задаче для оператора штурма – лиувилля c разрывными коэффициентами

В работе доказана единственность восстановления оператора Штурма – Лиувилля c разрывными коэффициентами по спектральным данным и дан алгоритм построения потенциала.

Обратная задача М.А. Лаврентьева об отображении полуплоскости на многоугольник в случае бесконечного числа вершин

В работе рассмотрено обобщение обратной задачи М. А. Лаврентьева о конформном отображения полуплоскости на некоторый многоугольник на случай многоугольника с бесконечным числом вершин. Считаются заданными внутренние углы многоугольника при неизвестных вершинах и прообразы этих вершин на вещественной оси. При некоторых ограничениях на величины углов при вершинах и на прообразы вершин, получена формула для искомого отображения.  

Решение обратной задачи для оператора диффузии в симметричном случае

В работе доказывается единственность и приведены достаточные условия разрешимости обратной задачи восстановления оператора диффузии по одному спектру.

Об одной обратной задаче для квазилинейного уравнения эллиптического типа

В работе рассматриваются некорректные обратные задачи в определении неизвестных коэффициентов в квазилинейном эллиптическом уравнении. Доказаны теоремы существования, единственности и устойчивости. Используя метод последовательных приближений, строится регуляризирующий алгоритм для определения нескольких коэффициентов.

Страницы

На сайте журнала 05.04.2023 запланированы технические работы. В это время сайт может быть недоступен. С уважением, администрация сайта.