Как известно, многие важные аддитивные категории функционального анализа и алгебры неабелевы. Многие классические диаграммные утверждения, справедливые в абелевых категориях, оказываются неверны в более общих аддитивных категориях без дополнительных предположений о свойствах морфизмов рассматриваемых диаграмм. Это, в частности, относится к так называемой лемме о змее, или Ker-Coker-последовательности. В статье получена теорема о диаграмме, обобщающей классическую ситуацию леммы о змее в контексте категорий, полуабелевых в смысле Паламодова.